Demystifying Cache: From Bytes to Memory
Fundies TA Team
Updated November 2025

Breaking down cache address bits is tricky. In this guide, we’ll step through in detail how to
partition a 32-bit address and work through some problems to test your understanding :)

Contents

() Info

There are multiple ways to explain this. Below I'll assemble those pieces step by step.
If you're already comfortable with the address breakdown, feel free to skip ahead to the
practice problems to test your knowledge!

Cache and Address Space

Cache Address Breakdown
Byte Offset: bytes in a word
Block Offset: words in a block
Set Index: blocks in a way
Mapping Cache to Memory
Ways & Associativity

Practice: Dividing Address Bits

Challenge Problem

Cache and Address Space

Be careful with units! They may appear as bit (b), byte (B), or word (4B)!

Our MIPS memory uses 32-bit addresses (0x00000000 through OxFFFFFFFF in HEX).
Each byte in memory has its unique 32-bit address.

A word in MIPS is 4 bytes (32 bits). We address by byte, but loads/stores move the entire
word.

Cache Structure

G Info

The circuit implementations can be found in the lecture slides and Harris & Harris section
8.3.2: "How Is Data Found" (pp 482-488)

A cache is organized as:

Cache
L— ways (if associative)
L— Blocks
L— words

L— Bytes

Let's create a cache bottom-up:

Don’t confuse this nested structure with the “hierarchy” of L1/L2/L3 caches

Byte Offset

The byte offset selects bytes within a 4-byte word.

It takes log,(4) = 2 bits to represent the 4-byte addresses: 00, 01, 10, 11
oo o]l lo]

Byte | Byte | Byte | Byte

Block Offset

Caches read/write in blocks, which may contain multiple words. To locate bytes within a block,
we break the low-order address bits into two parts.

Let's make the block 8 bytes, holding 2 words. We need log,(8) = 3 bits of index. They are split
into:

Block offset (which word in the block, navy): logs2lodksize. — 154, 88 — 1hit

word size

Byte offset (which byte in the word, blue): log, Vg;ij:iizzj = log, 12 = 2bits

Since transfers are word-aligned, those two bits are always 00

(G Info

Some texts combine the block-offset and byte-offset bits into a single “offset” field.

000 00] olo oll loo lo]| llo |l
Igﬁe Byte | Byte | Byte | Byte | Byte | Byte | Byte
word 0 word |

In a cache way, each block lives in exactly one “set." If each cache way has W bytes and each
block is B bytes, then we have

Number of blocks = %

Set index bits = logz%
Let's make each way contain 4 total blocks (8 words, 32 bytes). The address range is 00000

- 11111. The set index will be the two leading bits.

For instance, the highlighted word has address 01 1 00 in the cache, where

01 (2 bits, red): set index
1 (1 bit, navy): block offset
00 (2 bits, blue): byte offset

data.

ta
J word 0 word |

set 0o
set ol
set 10
set |1

D”oo

word © word |

Mapping One-way Cache to Memory

Main memory is huge (32-bit addresses), but caches are small (ours has a 5-bit address
space). A cache acts like a small set of “drawers” that hold recent data. To cache a memory

address:

Take the lower 5 bits (set index, block offset, byte offset) to map to its set (drawer)
The remaining 27 bits form the tag, identifying which region of main memory is stored in

that drawer.
When looking up a cache:

Use the set index bits to pick a set
Since the entire block is cached (spatial locality), the byte and block offsets won't
matter.
Compare the stored tag with the addressed tag
If equal, hit
If not or empty, miss: load the entire block from memory into the cache and update its

tag

Multi-way Cache and Associativity

In a direct-mapped cache. If a new memory address maps to the same set, it overwrites that
entry

To prevent that, we make each set hold k blocks (k-way associative)

A newly cached block can go into any empty way in that set; overwriting only happens when
all k ways are occupied

Making our 32-byte direct-mapped cache into a 2-way set-associative would need 64 bytes

data dota.
% word, 0 word | 9 word 0 word |

(o)

set 00

[A))

set ol
(2)

set 10

(3

set 1

Lookup is similar:

Set index selects the “drawer” (set).

Compare incoming tag with all k tags in that set.

If any matches, hit. A MUX selects the correct block.

If none match, miss: load the block from memory into one of the k ways and update its tag.

Practice: Dividing Address Bits
Let's turn this configuration into a Fundies problem and peel the onion backwards!

Given a 64-byte 2-way associative cache with a 64-bit block size, divide the address bits
into tags, set index, block offset, and byte offset

Find the size of each way: 64 bytes / 2 ways = 32 bytes/way

Find the number of sets (blocks in each way): 32 bytes / (8 byte/block) = 4 sets
2 bits of set index (take the log)

Find the number of words in a block: (8 byte/block) / (4 byte/word) = 2 words/block
1 bit of block offset

Find the number of bytes in a word: always 4 bytes/word
2 bits of byte offset

The rest of the address bits are the tag: 32-2-1-2=27 bits

Tag Set idx Block off Byte off | Total
27 2 1 2 | 32

easy!

Challenge Problem

Here's a challenge problem taken from last year's PS, which really tests your understanding of
caches and address splitting:

A CPU may change its cache parameters mid-execution
For each change, decide if existing cached blocks remain valid or must be discarded.

(@) Info

Hint: sketch the old and new address partitions side-by-side. Write out how many tag,
index, and offset bits of each configuration before and after the change.

Direct-mapped: block size doubles from 1 word / block to 2 words / block

Invalid: This requires merging two adjacent blocks. You can’t guarantee both halves are
present, or that they are mapped from the same tag in memory. Cache is not an injective
mapping.

set +ag dota set tog dota
i X% % (
000 | xxxx 00 \-".’\,’}’7 X
ool | yyyy ol| 2222 ZZ?fncomplefe X
‘(l’ Y
ol [0
oll | 2222 |
(oo y\{\!\,/ooloo //\ woml o word |
lo |
Ilo|aoaa
1) Lagaa

Direct-mapped: block size halves from 2 words / block to 1 word / block

Valid: Each smaller block is a contiguous sub-block of the larger one. Data is already present,
and their tag remains the same. One old block-offset bit (LSB) becomes a set-index bit.

How would your answers to 1 and 2 change if the cache were fully associative?

Same logic: merging blocks in different ways may lead to discontinuous or incomplete blocks,
but splitting is fine.

et tog doto. tog doto tag doto to doto.
XXXXO0 V\!\’,\'l (o) 22220
et tog doto tag doto.
x ¥
::;3\11 2 < ?v '(- 2223 24 17 ? l'ncom?lete
word 0 word | word 0 word |

X X

Set associative, goes from 4-way to 8-way associative

Valid: Associativity doubles — sets halve — a former set-index MSB becomes a tag bit.
Existing placements remain legal, as tag bits can take any value anywhere in the cache.

Set associative, goes from 4-way to 2-way associative

Invalid: Associativity halves — sets double — a former tag bit becomes a set-index MSB.
Blocks with different tag bits but the same tag LSB may collide in the same new set.

et tog doto tog doto fwj doto {'aﬂ doto
O | XXXX0 7\';7\,1 o 2222 0

| |anna© bbbb |

L
set vy €
rrey

00 | XxxX 2222¢ X
ol
[} 0008

(1 [bbbb

Can you see a pattern?

Increasing block size or reducing associativity both collapse the cache's structure: multiple
previously distinct blocks now map to the same set. Existing blocks cannot be safely
reinterpreted

