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Abstract 
Accurate tracing of grain boundaries in microscopy images is vital in material science, 

yet current models need more data and a more accurate loss function. In this report, we present a 
twofold contribution to improving grain-tracing U-nets. First, we introduce a systematic data 
augmentation pipeline that uses GIMP to crop each image and its corresponding ground-truth 
tracing into aligned sub-images. This approach expands the training set while preserving trace 
integrity. Second, we examine binary cross-entropy (BCE) loss and demonstrate its tendency to 
double-penalize slight misalignments. To address that, we develop two evaluation metrics: a 
binary “top-hat” criterion that rewards traces within a fixed-pixel dilation and a continuous 
normalized Gaussian dilation loss that smoothly interpolates reward and penalty based on 
distance. By constructing dilated reward masks and computing pointwise products within 
network outputs, we obtain loss curves that decrease monotonically over 0-300 training epochs, 
consistent with the trend of qualitative visual improvements. The evaluation function allows 
turnable tolerance through the Gaussian σ parameter. Together, these methods offer a robust 
framework for data generation and performance evaluation in U-net tasks.  

 

Introduction 
We use Unet models to predict grain boundaries. The current model predictions are very 
accurate, but there are a few areas where it can be improved. This report will have two parts:  

1. Data Augmentation Pipeline: a systematic way to generate new training data from the 
existing data, to boost training data quantity and encourage more definitive predictions.  

2. Custom evaluation metric: We analyze the current BCE loss functions and build an 
alternative from scratch, incrementally adding features to it. This gives us an objective, 
tunable way to compare models trained with and without the augmented data.  



1. Data Augmentation Pipeline 
The first task is to generate more training data from existing data. We extend our training set by 
splitting each original input image—and its corresponding ground-truth tracing—into smaller 
sub-images using GIMP. 

1.1 Cropping the Image 

The tracing only covers complete grains. Grains extending to the input's boundary are not traced 
in the ground truth tracing image. For each sub-image, we ensure that each sub-tracing contains 
as few boundaries as possible. However, including a few untraced areas is still fine, as the 
original model is trained with normal input but truth with cut boundaries.  

A sub-image will typically include more than 5 grains. Some sub-images overlap in the center in 
order to capture the boundaries. 

For example, in Figure 1(a), a tracing image may be cut into the following five sub-images.  

 

Figure 1(a). Splitting an image into different sub-images. Each colored box represents a sub-image. 

Using GIMP, we applied the same crop on the original input images at different fields of view to 
ensure that the resulting images and tracings were still aligned.  



1.2 Image Processing 

The original cropped labels directly exported from GIMP have issues: The tracing lines are 
blurry. The images need to go through the following procedure shown in Figure 1(b): 

1. Binarize the tracing 
2. Dilate the tracing using a Gaussian kernel to 3 pixels 

 

Figure 1(b). Local detail of a cropped tracing. The left is directly exported from GIMP, and the right is binarized and 
dilated to 3 pixels. 

The dilation thickness can vary, and a future work will be to compare model training results 
under different truth tracing thicknesses.  
 

1.3 Folder Structure and Naming Convention 

Originally, images from different fields of view all pointed to the same tracing file. We fixed this 
by duplicating and renaming each tracing so that every image now has its own unique, 
one-to-one mapping to a corresponding tracing, shown in Figure 2. 

 

 

 

 

 



Unset
training_validation_data/ 

└── validation/ 

    ├── xxxx_validation/ 

    │   └── aligned/ 

    │       ├── xxxx_n.png 

    │       ├── xxxx_trace.png 

    │       ├── image/   # cropped input images 

    │       │   ├── xxxx_n_m.png 

    │       └── label/   # matching cropped tracings 

    │           ├── xxxx_n_m.png 

    └── … 

● Original input: xxxx_n.png 
● Original tracing: xxxx_trace.png 
● Cropped input: image/xxxx_n_m.png (where m is the cropping index) 
● Cropped label: label/xxxx_n_m.png 

 

Figure 2. File folder organization of the cropped images and tracings. 

MP: Make a note that the original 299 patches were prepared in the same way, and this is 
to extend the dataset 



1.4 Result 

We combined the cropped new data with the original (“OG”) training set to create the 
Gong_sum dataset and likewise merged it with the Grae retracing set to form GG_sum.  
 
All three datasets were used to train and infer at a fixed resolution of 1024×1024 over 90 epochs. 
The resulting predictions are presented in Figure 3. 

 
Figure 3. (a) input and (b-d) inference results using (b) OG, (c) Grae_nuevo, and (d) GG_sum training sets. 

 
As in Figure 3(b and d), the augmented datasets (Gong_sum and GG_sum) produce more 
definite predictions with higher-contrast tracings. Neither model, however, fully captures the 
finest structural details. 



2. Loss Function Evaluation 
The original goal was to monitor how the model prediction quality evolves over training by 
evaluating a single input image against multiple model checkpoints (0-300), eventually 
developing a pipeline for multiple input images.  

However, we encountered issues with the standard binary cross-entropy loss. In this section, we 

1. Diagnose the problem of point-wise metrics like BCE for grain-tracing tasks 
2. Design a custom loss function from scratch, from a simple top-hat dilation to adding 

Gaussian smoothing, adding complexity until we arrive at a metric that aligns with 
human judgment. 

2.1 Workflow 

Below is the workflow for preprocessing the input and tracing images to prepare data for the 
model and the evaluation function: 

Input Preprocessing 

1. Remove the image borders (scale bar, etc) 
2. Resize the image to the output resolution 

Tracing Preprocessing 

1. Remove borders 
2. Resize to the output resolution 
3. Binarize to white tracing on a black background 
4. Dilate the tracing lines to 3 pixels 

 
No additional postprocessing, such as binary thresholding, was applied to the model output. 

 
Evaluation 

1. Inference 
○ Load a preprocessed input image at the target resolution. 
○ Run the model (for a given checkpoint/epoch) to produce the output mask. 

2. Loss Evaluation 
○ Apply the loss function to the output and ground-truth tracing. 
○ Record this single “loss score” as that model’s performance on the image. 



3. Epoch Sweep 
○ Repeat steps 1–2 for each saved model epoch 
○ Plot loss versus epoch to visualize training convergence. 

2.2 Point-wise Loss Functions 

We have been evaluating the predictions with BCE Loss, the loss function used for training.  

BCE 

BCE stands for binary cross-entropy, commonly used in binary classification problems. For each 
pixel, it measures the difference between predicted probabilities and the actual binary labels. The 
final BCE score is simply the mean over all N pixels. 

 

where y is the predicted output and  is the ground truth 𝑦

 

 

Figure 4: BCE loss of a single pixel against itself. The horizontal axis is the pixel brightness. 

 

From Figure 4, BCE Loss may not be zero even if both images match exactly. BCE rewards 
confident outputs (0 or 1) and penalizes anything in between. Concretely, when both pixels are 1, 
-log(1) = 0; when both pixels are 0, log(1-0) = 0. However, neither log term will evaluate to zero 
for pixel values in between (gray), so the loss remains positive. 



2.3 Issue with BCE Loss 

The prediction was evaluated against the ground truth with nn.BCELoss() as the loss 
function. As in Figure 5(a), over increasing different epochs, the loss diverged.  

 

Figure 5(a). BCE Loss vs Epoch, with ground truth tracing = 3 pixels and output resolution 1024*1024 

 

To isolate the problem, in Figure 5(b), we showed the model outputs at different epochs of the 
same input image at 1024 output resolution. 



 

Figure 5(b): Model inference of the same input image, compared to the ground truth (lower right) 

In the top row, the 0-epoch model produces a very blurry output. By 30 epochs, it correctly traces 
the overall grain shapes—though its coloring is still rough. From 60 to 90 epochs, the network 
refines finer structural details and yields much sharper boundaries. After 90 epochs, 
improvements are limited to minor, local adjustments: by 300 epochs, the predictions closely 
match the ground truth, aside from some very fine tracings that remain incomplete. Overall, the 
outputs steadily converge toward the reference masks as training progresses. 

However, the BCE loss function produced counterintuitive results. To find out why, we 
compared and output and traced images pixel-wise to find out the origin of BCE loss. 



 

Figure 6: (a) input, (b) prediction, (c) ground truth, and (d) overlay of prediction on ground truth. Results are from 
inference using a model trained for 300 epochs with an output resolution of 1024. 

Figure 6 displays the input, output, and truth images side-by-side. They are overlaid in Figure 
6(d), where each pixel represents the following: 

● White: correct boundary prediction (true positive) 
● Black: correct background prediction (true negative) 
● Red: Missed prediction (false negative) 
● Blue: Incorrect prediction (false positive) 



The white and black pixels will have zero contribution to the loss, but both red and blue are 
penalized by BCE. 

The overlaid image has a lot of red and blue segments, meaning it’s heavily penalized by BCE. 

In Figure 7, the predicted results are very close to the ground truth, with the same shape and 
topology, but most lines are off by a few pixels. Red and blue double-penalize the missed pixels. 
Only a small portion of the overlap (white) is not penalized.  

 

Figure 7: a local detail of Figure 6(d). 

 

Also, when looking at the overlaid images globally, the red and blue lines cannot be told apart, 
but the pixel-wise BCE loss function will catch the slight difference and double-penalize it.  



As a comparison, the inference at 50 epochs is evaluated below in Figure 8: 

 

Figure 8: (a) input, (b) prediction, (c) ground truth, and (d) overlay of prediction on ground truth. Results are from 
inference using a model trained for 50 epochs with an output resolution of 1024.  



 

 

Figure 9: local details of (a) Figure 8(d) (50 epochs) and (b) Figure 6(d) (300 epochs) 

Figure 9 compares the 50-epoch overlay and 300-epoch overlay side-by-side. At 50 epochs, the 
model’s prediction is mostly ambiguous, with many disconnected dots. At 300 epochs, the 
prediction from certain lines resembles the actual grain boundaries.  

However, for 50 epochs, since the model barely predicts anything, it is only penalized once for 
“missed prediction” (red), resulting in a BCE loss of 0.31. 

For 300 epochs, since most predicted pixels miss the actual truth by a small margin, it is 
penalized both for “missed” (red) and “false positive” (blue), resulting in a higher BCE loss of 
2.61! 

Below, we isolated a few more problems, showing BCE loss is the actual root cause of the issue. 

 



Truth thickness 

In the section above, the overlaid images contain significantly more red pixels (false negatives) 
than blue pixels (false positives). Also, the tracing appears thicker (lines with more pixels) than 
the model prediction.  

We tried to vary the thickness of the ground truth tracing. The truth tracing was dilated to 3 
pixels and then skeletonized to 1 pixel (through repeated erosion to 1-px line widths). The 
magnitude of the loss dropped (due to fewer missed pixels), but the loss vs epoch still diverged 
in Figure 10. 

 

Figure 10. BCE Loss vs Epoch, with ground truth tracing = 1 pixel and output resolution 1024. 

 



 

Figure 11: (a) input, (b) prediction, (c) 1-pixel-thick ground truth, and (d) overlay of prediction on ground truth. 
Results are from inference using a model trained for 300 epochs with an output resolution of 1024. 

As in Figure 11, a thinner ground-truth tracing will reduce the number of false negatives, but it 
does not fundamentally solve the alignment problem. Each image merely has fewer misses. 
However, misalignments are still double-penalized. Since the tracing is thinner, misalignment is 
even more serious.  



Output Resolution 

The output resolution is also adjusted from 1024 to 256 to dilate each pixel and mitigate the 
misalignment issue. However, as in Figure 12, misalignment is still prevalent. 

 

Figure 12: (a) input, (b) prediction, (c) ground truth, and (d) overlay of prediction on ground truth. Results are from 
inference using a model trained for 300 epochs with an output resolution of 256. 

In summary, pixel-wise comparison methods, such as BCE, have the following problems: 

● Even tiny misalignments (red vs. blue traces) count as full errors, doubling the loss 
● Predicting a blank mask can yield deceptively low BCE. 



3. Top-Hat Classification 
This section introduces the top-hat evaluation as an alternative to BCE loss. Top-hat 
classification builds a spatial tolerance “halo” around the ground-truth tracing: 

● Predictions inside the dilated mask are rewarded (green). 
● Predictions outside are penalized (red). 

A simple idea is: 

1. Dilate the ground truth image by a fixed kernel to form a “reward mask” (Figure 13(c)) 
2. For each pixel, count a pointwise loss: 

● White prediction on green mask: negative loss (reward) 
● White prediction on red mask: positive loss (penalty) 
● Black prediction: not rewarded or penalized 

3. The total loss is the average loss across all pixels 

 

The overlay Figure 13(d) is computed by the pointwise multiplication of Figure 13(b) and (c) 
(“matrix dot product”) 

Most pixels are rewarded in green. Only those far away from any true trace fall in red (penalty). 
Note that missed pixels (false negatives) are simply unrewarded—they incur no penalty beyond 
not being in the green zone. 

 



 

Figure 13: (a) input, (b) prediction, (c) ground-truth mask, and (d) overlay of prediction on ground truth. Results are 
from inference using a model trained for 300 epochs with an output resolution of 1024. 

 

 



Result 

The Top-hat loss function was tested on 3 example images at different FOVs, using a 3x3 
dilation kernel on the ground-truth masks.  

From Figure 14, across increasing epochs, the measured top-hat loss consistently decreases, 
indicating a steadily improvement alignment with the reference tracings. Furthermore, the loss 
level at about 60 epochs, consistent with human observation. 

 

Figure 14. Loss vs. Epoch for the Top-hat loss function (kernel size = 3). 

In Figure 15, the truth kernel size was changed to (5, 5). The resulting curve had a similar 
converging trend.  

 

Figure 15. Loss vs. Epoch for the Top-hat loss function (kernel size = 5). 



4.  Normalized Gaussian Classification 
In the previous section, we applied a fixed‐pixel dilation to the ground‐truth tracing and used a 
simple binary scheme—predictions inside the dilated mask earn a reward, and those outside 
incur a penalty. 

In this section, we add another layer of complexity by introducing a continuous loss function that 
smoothly interpolates between reward and penalty: outputs closer to the true tracing receive 
higher rewards, while those farther away are penalized more heavily. 

4.1 Procedure 

1. The ground truth image is first inverted to white pixels on a black background 
2. For each pixel, a Gaussian kernel (Figure 16 (a)) is applied. Essentially, each pixel is 

“smeared” to its neighborhood. There are two parameters for the Gaussian kernel: 
○ Standard deviation σ: controls how far each pixel’s influence spreads 
○ Kernel size k: Truncates infinite Gaussian to a finite window since values beyond 

k*k become negligible 
3. For each pixel, compute the Gasussian-weighed contributions of itself and its neighbors. 

 

Figure 16. (a) Gaussian kernel of k = 15 and σ = 3; (b) The ground truth tracing dilated with the kernel (a). 

Figure 16(b) illustrates that summing the Gaussian‐weighted neighborhood makes 
intersections unnaturally bright—those pixels simply have more overlapping 
contributions. Figure 17(a) shows a local detail. 



To correct this, we replace the sum with a maximum over the k*k window, so every 
pixel’s value is the highest neighbor response rather than the sum. This is called 
max-aggregation, yielding uniform line intensity (Figure 17(b)) 

 

Figure 17. (a) Ground truth tracing dilated with a regular Gaussian kernel; (b) Gaussian dilation with 
max-aggregation and normalization. 

4. Finally, all values are normalized to [0, 1], the same as the original image.  

4.2 Reward Mask 

The tracing dilated under the normalized Gaussian is then remapped from [0, 1] to [-1, 1]. 

In Figure 18, values near +1 appear green, values near -1 appear red, and zero appears black. 
This mirrors the top-hat scheme but now offers a smooth, turnable transition across categories, 
producing a green-black-red gradient with adjustable size and sharpness. 

 

Figure 18: Gaussian dilated tracing mapped to a reward mask. 



4.3 Computing Loss 

Now, the loss function can be computed from a pointwise multiplication between the model 
output (Figure 19(b)) and the reward map (Figure 19(c)). Each foreground pixel (white, value = 
1) is multiplied by its corresponding reward value, while background pixels (black, value = 0) 
contribute zero. Averaging over this product then gives the final loss. 

 

Figure 19. (a) input; (b) 300-epoch model prediction at resolution 1024; (c) Gaussian mask with σ = 3 and k = 15; 
(d) the resulting overlay. 



As in Figure 19(d), correctly predicted pixels appear in green, slight misalignments fade through 
black, and complete errors appear in red. 

4.4 Comparison with Top-Hat Filter 

 

Above are the composite images for the Top-hat (Figure 13(d)) and normalized Gaussian (Figure 
19(d)) filters.  

●  Left: the binary top-hat result sharply divides correct (green) from incorrect (red) 
predictions with no middle ground. 

● Right: the smooth Gaussian filter 

Both maps identify good and bad predictions similarly; the Gaussian approach is more forgiving 
of small offsets by offering a smooth transition between true and false positives. 

4.5 Hyperparameters 

Similar to the kernel size of the top-hat dilation, The Gaussian filter has a turnable 
hyperparameter: σ. A larger σ produces a wider spread, dilating the reward region more and 
yielding a more forgiving loss. 

● Figure 19 uses the results for σ = 3, which we have been using before: 
● Figure 20 reevaluates the same ground truth reward mask but on the output for a 

50-epoch model. 
● Figures 21 and 22 performed the same procedure but with σ = 1 for the ground truth 

reward mask. 



 

Figure 20. (a) input; (b) 50-epoch model prediction at resolution 1024; (c) Gaussian mask with σ = 3 and k = 15; (d) 
the resulting overlay. 



 

Figure 21. (a) input; (b) 300-epoch model prediction at resolution 1024; (c) Gaussian mask with σ = 1 and k = 15; 
(d) the resulting overlay. 

 



 

Figure 22. (a) input; (b) 50-epoch model prediction at resolution 1024; (c) Gaussian mask with σ = 1 and k = 15; (d) 
the resulting overlay. 

 

The result is summarized in Table 1. With a smaller value of σ, the loss increases for both 50 
epochs and 300 epochs due to a stricter metric. 

 



Normalized Gaussian Loss σ = 3 σ = 1 

50 Epochs -5.8e-3 +6.9e-3 

300 Epochs -17.9e-3 -4.7e-3 

Table 1. Normalized Gaussian loss function under different σ hyperparameters and model epochs. 

4.6 Loss vs Epoch 

We evaluated the Gaussian‐filtered loss (σ = 3) on UNet models saved at epochs 0 through 300. 
The resulting loss curve decreases monotonically, exactly matching the qualitative observations 
of steadily improving predictions as training progresses. 

 

Figure 23. Loss vs epoch for the normalized Gaussian loss function, with σ = 3 

The normalized Gaussian dilation to the tracing image  

 



5. Future Work 
This loss function is far from complete. Future works include: 

● Make a balanced penalty for false negative predictions. Since the positive/negative 
classes are imbalanced, a proper weight must be applied.  
This will yield a function similar to BCE but with spatial tolerance baked in. 

● Explore other non-pointwise loss functions. 
● Adapt this loss function to Pytorch. This can be used in conjunction with traditional loss 

functions, such as BCE. 

Conclusion 
In this report, we tackled two challenges in grain-boundary detection. First, we developed a 
structured data-augmentation pipeline—leveraging systematic GIMP-based cropping and a clear 
naming convention—to expand our training set while preserving precise input–mask alignment. 
Second, we identified the limitations of standard BCE loss for misalignment-sensitive tasks and 
introduced a novel family of spatially-aware metrics, from binary top-hat dilation to a continuous 
Gaussian-dilated reward map, that better correlates with visual tracing quality. Our experiments 
on UNet models (0–300 epochs) show that the Gaussian-filtered loss decreases monotonically 
and plateaus in concert with qualitative convergence, demonstrating its value as both an 
evaluation tool and a potential training objective. Going forward, integrating balanced penalties 
for false negatives, exploring holistic shape metrics, and embedding this loss directly into 
PyTorch will further strengthen model robustness and alignment with human judgment. 

 

Code and Figures 
The code for this project can be found on the ming-loss-grain branch of the UNet GitHub 
repository: https://github.com/MatthewJPatrick/grain_unet_working/tree/ming-loss-grain 
 
The figures in this report are in this slideshow 
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