
Digital Electronics Lab 5 Report
Ming Gong (mg4264), Xuanyi Wu (xw3036)

Design
User Interface
The user interface has 8 switches (sw[7:0]) that are used to record notes, accompanied with
pb[3:0] . This is encoded to note_sel in the "User Interface" section of piano.vhd
At the rising edge of CLK , the hardware uses a lookup table to translate the values from
switch to the note encoding note_sel

When the modifier switches are active, the note_sel encoding is incremented or decremented
accordingly.

If multiple, or no switches are active, it's translated as 0000 (no note)

case switch is

when "10000000" => note_sel <= "0001"; -- C

when "01000000" => note_sel <= "0011"; -- D

when "00100000" => note_sel <= "0101"; -- E

when "00010000" => note_sel <= "0110"; -- F

when "00001000" => note_sel <= "1000"; -- G

when "00000100" => note_sel <= "1010"; -- A

when "00000010" => note_sel <= "1100"; -- B

when others => note_sel <= "0000";

end case;

-- Sharp -- Add one. PB(3) is the octave key.

if (PB(2) = '1') then

note_next <= PB(3) & note_sel + 1;

-- Flat -- Minus one.

elsif (PB(1) = '1') then

note_next <= PB(3) & note_sel - 1;

else

note_next <= PB(3) & note_sel;

end if;

The final note_sel will be 5 bits.

PB(3) PB(2) PB(1) switch note_sel Note

0 0 0 10000000 00001 C3

0 1 0 10000000 00010 C3#

0 0 0 01000000 00011 D3

0 1 0 01000000 00100 D3#

1 0 0 10000000 10001 C4

Clock Divider
In the counter section, trigger is only set to 1 at the next cycle when count == DIV .

An active trigger controls more signals in the toggle_trigger section in the next cycle

The diagram below shows the signal timing diagram for DIV = 5 (dec). In reality, there will be
500 cycles between each change of all internal and output signals.

The clock frequency in the diagram is drawn 10 times slower for clarity
The diagram assumes that each variable is 0-initialized. The waves may look different if
initialized differently. Regardless of the nuances of cycle delay, the results are:

If PB(2) or PB(1) is active, note_sel is incremented or decremented, respectively
PB(3) is concatenated with the original note_sel .

The MSB encodes the octave number. If the MSB is 0, it's in 3; if the MSB is 1, it's in 4
The LSBs encode the note name and accidental sequentially. 0001 maps to "C3", and
1100 maps to "B3".
Below is a table that summarizes the pattern:

toggle flips its value
When toggle = 1 , ONE_SHOT is set to 1 for a cycle
In the output section, CLK_OUT also flips its value at the next cycle when trigger = 1

Note divider
note_gen.vhd further divides the 1 MHz clock from clk_dvd.vhd . Here, the division cycles
are determined from a lookup table for a specific note.

fout =
1 MHz

2DIV

Below are the resulting frequencies of each note in the lookup table. They are very close to the
actual frequency.

Note DIV (hex) DIV (dec) fout (Hz) Actual frequency (Hz)

C3 0EEE 3822 130.82 130.813

C3# 0E18 3608 138.58 138.591

D3 0D4E 3406 146.80 146.832

D3# 0C8E 3214 155.57 155.563

E3 0BDA 3034 164.80 164.814

F3 0B30 2864 174.58 174.614

F3# 0A8E 2702 185.05 184.997

G3 09F7 2551 196.00 195.998

G3# 0968 2408 207.64 207.652

A3 08E1 2273 219.97 220.000

A3# 0861 2145 233.10 233.082

B3 07E9 2025 246.91 246.942

B3# 0777 1911 261.64 261.626

C4b 07E9 2025 246.91 246.942

C4 0777 1911 261.64 261.626

CLK_OUT toggles every 50 cycles of CLK between 1 and 0
ONE_SHOT goes high for one CLK cycle, and then stays low for 99 cycles.
Both have a frequency of 1 MHz (divided by 50 * 2 = 100).

case NOTE_IN is

when "00000" => next_div <= x"0000";

when "00001" => next_div <= x"0EEE"; -- C3

when "00010" => next_div <= x"0E18"; -- C3#

when "00011" => next_div <= x"0D4E"; -- D3

-- ...

Note DIV (hex) DIV (dec) fout (Hz) Actual frequency (Hz)

C4# 070C 1804 277.16 277.183

D4 06A7 1703 293.60 293.665

D4# 0647 1607 311.14 311.127

E4 05ED 1517 329.60 329.628

F4 0598 1432 349.16 349.228

F4# 0547 1351 370.10 369.994

G4 04FB 1275 392.16 391.995

G4# 04B4 1204 415.28 415.305

A4 0470 1136 440.14 440.000

A4# 0431 1073 465.98 466.164

B4 03F4 1012 494.07 493.883

7-Segment Display State Machine
seven-seg.vhd takes an encoded note and displays it on the off-chip 4-digit 7-segment
display.

1. Convert encoded notes to hex digits

An encoded note NOTE_IN is converted to hex digits for 7-seg to display. Each digit and the DP
(for accidental) are concatenated and stored in seg_buf .

case NOTE_IN is

when "00000" => seg_buf <= "1010" & "1010" & '0'; -- AA

when "00001" => seg_buf <= "1100" & "0011" & '0'; -- C3

when "00010" => seg_buf <= "1100" & "0011" & '1'; -- C3#

-- ...

For example, note 00001 maps to "C3#". The output in seg_buf is:
1100 for "C"
0011 for "3"
1 for "#" (DP)

If an encoding is invalid, seg_buf will be set to "AA" or "AA."

2. Scan through the digits

The 7-segment has 4 digits. They are updated by taking turns.

When SCAN_EN is active, cnt_cur_dig cycles through cur_dig from 00 (LS) to 11 (MS)

3. Load a specific digit

When a digit is scanned, buffers digit_now and point_now will be set to the corresponding
sections of seg_buf . Note that

4. Decode hex digit to 7-segment

if (SCAN_EN = '1') then

cur_dig <= cur_dig + 1;

end if;

case cur_dig is

when "00" =>

DIGIT <= "1110";

digit_en <= '1';

digit_now <= seg_buf(4 downto 1);

point_now <= not(seg_buf(0));

when "01" =>

DIGIT <= "1101";

digit_en <= '1';

digit_now <= seg_buf(8 downto 5);

point_now <= '1';

-- ...

The first two digits (10 and 11) are unused, with digit_en = 0
DIGIT , the output that directly enables the 7-segment digit's anode, is set here
DIGIT and point_now are active low.
point_now can only be active after the last digit

if (digit_en = '1') then

case digit_now is

when "0000" => seg <= "0000001" & point_now ; -- 0

when "0001" => seg <= "1001111" & point_now ; -- 1

when "0010" => seg <= "0010010" & point_now ; -- 2

-- ...

This is the standard hex-to-7-seg decoder lookup table. The output seg (active low) is
concatenated from the digit segments and DP. It then directly goes to the cathodes, writing to
the active digit of the 7-segment display.

This process repeats for all digits (enabled or disabled)

Implementation
Test cases
We wrote a simulation test for various inputs in the Test Bench section.
Cases tested:

Different values for switch_in
pb[0] : reset
pb[1] : sharp
pb[2] : flat
pb[3] : higher octave

-- *** Test Bench - User Defined Section ***

tb : PROCESS

BEGIN

-- System Reset

pb_in(0) <= '1';

wait for 400 ns;

-- input C3 output C3

pb_in <= "0000";

switch_in <= "10000000";

wait for 392 us;

-- input D3 output D4#

-- pb_in raise key and one octave

pb_in <= "1100";

switch_in <= "01000000";

wait for 392 us;

-- input E3 outputs D4#

-- pb_in raise key,one octave lower

pb_in <= "1010";

switch_in <= "00100000";

wait for 392 us;

-- input E3 outputs F3=E3#

Simulation
Below is the simulation result. We'll analyze the first test case (C3) in detail. The other cases
follow similar ideas

-- pb_in stay key, one octave higher

pb_in <= "0100";

switch_in <= "00100000";

wait for 392 us;

-- input F3 outputs E3

-- pb_in stay key, one octave lower

pb_in <= "0010";

switch_in <= "00010000";

wait for 392 us;

-- input B3 outputs B4

-- pb_in raise key and octave unchanged

pb_in <= "1000";

switch_in <= "00000010";

wait for 392 us;

END PROCESS;

-- *** End Test Bench - User Defined Section ***

The inputs are: pb_in = 0 (0000), switch_in = 80 (10000000)

digit_out digit_out (bin) Digit place seg_out seg_out (bin) Digit

e 1110 Digit 0 0d 00001101 3

d 1101 Digit 1 63 01100011 C

b 1011 Digit 2 ff 11111111

7 0111 Digit 3 ff 11111111

The next few inputs are for D4#, D4#, F3, E3, B4, using the same analysis.

-- input C3 output C3

pb_in <= "0000";

switch_in <= "10000000";

wait for 392 us;

Specifically, switch_in[7] is 1, and the rest are 0
The module calculates the output at digit_out and seg_out and updates them
sequentially.
led_out = XX , since we have not defined them
digit_out cycles between e (1110, Digit 0), d (1101), b (1011), 7 (0111, Digit 3)

When seg_out[0] = 0, DP is displayed (for #)

