
MIPS-sample.md 2024-10-18

1 / 2

Breakdown of gcd.s:

Program starts here sequentially:

gcd:
 beq $a0, $a1, exit # if a = b, go to exit

The code below recursively subtracts b from a until a < b.

beq: branch on equal
If $a0 (a) == $a1 (b), go to exit

 slt $v0, $a1, $a0 # is b > a?

slt: set less than
$v0: comparison (function) result, which is either 0 or 1

 bne $v0, $0, suba # if yes, goto suba

bne: branch not equal
$0 = 0 for convenience

Branch to suba if $v0 != 0

 subu $a0, $a0, $a1 # subtract b from a

subu: subtract unsigned
$a0 -= $b0

 b gcd # and repeat

b branches back to gcd
A new value of $a0 is passed to gcd

suba:
 subu $a1, $a1, $a0 # subtract a from b
 b gcd # and repeat

Same thing as above, except the order of subtraction swapped

MIPS-sample.md 2024-10-18

2 / 2

exit:
 move $v0, $a0 # return a

$a0 (a) now holds final gcd value

 jr $ra # go back to caller

jr means "jump register" to $ra
$ra is the of where gcd is initially called. It will not recursively exit to slt $v0, $a1, $a0
The control ends here, and the output is at $v0

