
MIPS.md 2024-12-06

1 / 6

SPIM

FP Regs: floating point registers (out of scope)
Int Regs[16]: contents of all integer registers
Data: Contents of data memory (store/load)
Text: contents of program memory (your instructions)

By the time you assemble it, it will be stored in a section of data.
Reset spim takes out all Data and Text memory

Interface

Registers

Number: 0-31, how machine interacts with the registers
Name: human read
Current register content (most initialized 0)

On top, a few registers containing pointers

PC: program counter (address of currently executing instruction)

Instructions (Text)

jal 0x00000000 [main]

MIPS.md 2024-12-06

2 / 6

Jumps to main, where you start with. If no main, error!

Right: source file instructions (your MIPS code)
Middle: intermediate instructions
Left: binary encoding (each instruction is a 32-bit wide bitstring in HEX)
Left most: memory address of instruction (stored in PC at execution time)

Memory (Data)

Left: address
Middle: data in hex representation
Right: data in ASCII representation

Pseudoinstructions

E. strlen
String storage in memory: ASCII bytes with NULL terminator

Need a pointer to the first element $a0$, increment it, until hitting 0.

Subroutine
aka function

After executing, resumes whatever invoked it

Useful for

Code reuse
Isolation/abstraction

MIPS.md 2024-12-06

3 / 6

Recursion

Changes program control twice

1. Function call: jal (jump and link),
Saves the return address in $ra
Jumps to the function

2. Function return: jr $ra (jump register)

// Example of call tree
int main(int argv, char **argc){
 for (i = 0; i < 3; i++){
 mysub(i);
 }
}
void mysub(int x){
 myleaf();
}
void myleaf(void){
}

One of the branches is in-progress: called the stack of active funciton invocations (Example: main(),
main()/mysub(0)/myleaf())

In MIPS, call stack lives in memory. Pointer $sp points to the top of the stack, and stack grows down

Example: nested function call: want A to call B, which calls C Don't want return address $ra to be overwritten

A:
 addi $sp, $sp, -4 # allocates space on stack
 sw $ra, 0($sp) # saves original return address to stack

 jal B
 # Now $ra overwritten, but saved already

 lw $ra, 0($sp) # retore original return address
 addi $sp, $sp, 4 # de-callocate space on stack

 jr $ra

B:
 addi $sp, $sp, -4 # same thing here
 sw $ra, 0($sp)

 jal C

 lw $ra, 0($sp)
 addi $sp, $sp, 4

 jr $ra

MIPS.md 2024-12-06

4 / 6

C:
 jr $ra # C calls nothing, no need to S/L

Complete MIPS Addresss space
Kernel level

reserved, memory mapped IO, kernel data, kernel text
User level

Stack segment (size variable)
... (collide: out of memory/stack overflow)
Dynamic data (heap, size variable)
Static data (data constant size when program is written (E. string))
Text segment

Kernel level
reserved

Calling conventions
ISA only have 32 registers, but some functions that need the same registers.

Caller view

Put any arguments in $a0, $a1, $a2, $a3

jal mysub

When control returns, return value in $vo, $v1

$s0, ..., $s7 (saved registers), $gp, $sp (stack pointer), $fp, $ra (return address) unchanged
$a0, ..., $a3; $t0, ..., $t9 (temporary) may be overwritten. Anything that I want to save should be put in
$s registers

Callee view

Entry point:

$ra holds return address
$a are the first 4 args

mysub:
 # body of subroutine
jr $ra

Return:

MIPS.md 2024-12-06

5 / 6

$v holds the result
$s, $gp, $sp, $fp, $ra restored to values in entry (using stack)

Example: recursive strlen()

(a function is both caller and callee)

strlen:
 # if first character is null, go to base case
 lbu $t0, 0($a0) # load byte unsigned from memory
 beqz $t0, strlen_basecase # if = 0

 # otherwise, recurse
 addi $sp, $sp, -4 # alloc word on stack
 sw $ra, 0($sp)
 addi $a0, $a0, 1 # advance STRING pointer
 jal strlen # recursive call

 # eventually after base case, will end up here
 addi $v0, $v0, 1 # add 1 to length
 lw $ra, 0($sp)
 addi $sp, $sp, 4
 jr $ra

strlen_basecase:
 # return 0
 li $v0, 0
 jr $ra

Strored program
Instructions are encoded and stored in memory.

No need to rewire

In MIPS, 3 formats, all necodings 32 bits wide

R-type: register operands (3 registers)
I-type: immediate operands (2 registers + 1 imm)
J-type: for jumping

Fewer formats are simpler and faster

R-format

Example: add, $s0, $s1, $s2

Name Meaning Size Example Example (dec)

op opcode 6 add 0

MIPS.md 2024-12-06

6 / 6

Name Meaning Size Example Example (dec)

rs source register 5 $s1 17

rt source register 5 $s2 18

rd destination register 5 $s0 16

shamt shift amount (usually 0) 5 0

funct used together with opcode 6 add 32

I-format

Example 1: addi $t0, $s3, -12

Example 2: lw $t2, 32($0)

Name Meaning Size E1 E1 (dec) E2 E2 (dec)

op opcode 6 addi 8 lw 35

rs source reg 5 $s3 19 $0 0

rt flex reg 5 $t0 8 $t2 10

imm immediate 16 -12 -12 32 32

rt is sometimes source, sometimes destination. rs always source, rd always destination

beqz is also I-format. Compiler replaces label with offset (go x instructions forward)

J-format

Name Meaning Size

op opcode 6

addr middle of target address 26

26 bit to 32 bit

Reuse the top 4 bits (limit on how far you can jump)
End 2 bits always 00, since instructions always start address of multiples of 4

