
 

(a) Step Response 
Step response derivation: 

 
 
Circuit schematic: 



 

Ideal plot: 

 
 
Simulation plot: 

 
They look exactly the same :) 

 



 

Physical Experiment 
Circuit photo: 

 

We used a CMOS switch array to ground the output of U2 and U4 to satisfy the initial conditions 
x(0) = 0 and x’(0) = 0. 
We generated a square wave (yellow) with a long period to simulate the step input. The probe 
was on the negative terminal of the function generator, so the step input appeared negative. 
 
Below are the step response plots (green). The second figure is shifted and scaled for clarity. 

 
They match perfectly with the theoretical and simulated behavior, with an overshooting peak at 
about 4s, followed by damped oscillation. 

 



 

(b) Damping Factor 
R3 controls the weight of the term of the first derivative of x(t). When R3 is shorted out (R3 = 0), 
the coefficient of the first-derivative term will be zero, and the system does not damp. It will 
oscillate forever. 
The rise time of V1(t) is set to be 0 ns.  

 
This is a cosine wave. x(t) = 1 - cos(t).  
There is no exponential decay factor to dampen the response. It will keep oscillating.  

Physical Experiment 
We replaced R3 with a wire. 

 
The amplitude of the first cycle was around 1V, which matched the simulated response. 
However, the response began to slightly decay afterward. Still, the sinusoidal oscillation was still 
visible after 40 seconds.  



 

(c) Critical Damping 

 

Critically damped, R3 = 2 Meg 

 
 

 
The results matched perfectly. 

 



 

Overdamped, R3 = 20 Meg 

 

 

Perfect match. This damping is much slower than the critical damping case. 

Underdamped, R3 = 0.2 Meg 

 

 

Again, perfect match. The step response oscillates.  



 

(d) Higher Frequency Parameters 

 
I only modified tau to prevent op amp saturation in any of the stages. 
 
Design: 

 
Since the frequency increases 100 times, I ran the transient simulation for 0.4 s instead of 40 s. 
 
In the physical experiment, we only need to change R1, C1, R2, C2, and vary R3 accordingly. 
 
The 0.1u capacitor did not work, so we instead used the backup design R1 = R2 = 10k, and 
kept C1 = C2 = 1u. The products R1C1 and R2C2 are unaffected.  
 



 

Critically damped, R3 = 2 Meg 

 

Overdamped, R3 = 20 Meg 

 

Underdamped, R3 = 0.2 Meg 

 
All results matched perfectly with the simulation!  



 

(e) AC Simulation 

 
All parameters are left unchanged. R3 is set to 2 Meg for critical damping. 
 
Calculated frequency response: 



 

Below are the gain and phase shift plots. For clarity, I left the gain in ratio, angle in radians, and 
frequency in rad/s. A simple unit conversion would show the equivalency. 

 

 
The phase shift went from 0 to -90 degrees. 

 



 

(f)  Quality Factor 

 
Make R3 = 0.1 Meg, the rest unchanged 

 
 
There is a sharp peak of high gain at a resonant frequency of 100 rad/s. The phase shift is also 
sharper around resonance.  



 

(g) First Derivative Frequency Response 
Let the output of U1 be vy(t). The value of R3 is retained from part (f): 0.1 Meg 

 
This is a bandpass response. 

 



 

(h) Behavior Analysis 
The measured center frequency is 15.92 Hz. The peak gain is 20 dB. To measure bandwidth, I 
found frequencies where the gain is (20-3) dB. B = 16.71 - 15.14 = 1.57 Hz.  

 
The calculated bandwidth matches the measured. The quality factor relation is also verified. 

 



 

(i) Second Derivative Frequency Response 
Let vz(t) be the output of op amp U3, which is proportional to the second derivative of vx(t). 
Let Hz(ω) be the ratio between Vz and the input V1. Hz is the third frequency response. 
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